这
 OPTIMUM
 INTERNATIONAL SCHOOL

CLASS - X

CHAPTER 2 - POLYNOMIALS

> Watch the online videos "POLYNOMIALS -Lecture 4 \& 5 " from Optimum Online E-Learning Platform and try to comprehend the concepts of Zeroes of Cubic polynomials \& its relationship with their coefficients. After that try to solve the questions given in your assignment.
$>$ Lecture No. 04
$>$ Lecture No. 05

1. Verify that the numbers given alongside of the cubic polynomials below are their zeroes. Also, verify the relationship between the zeros and coefficients in each of the following cases:
i. $\mathrm{f}(\mathrm{x})=2 x^{3}+x^{2}-5 \mathrm{x}+2 ; 1 / 2,1,-2$
ii. $\quad g(x)=x^{3}-4 x^{2}+5 x-2 ; 2,1,1$
2. Find a cubic polynomial with the sum, sum of the product of its zeroes taken two at a time, and product of its zeros as $\mathbf{3 , - 1}$ and $\mathbf{- 3}$ respectively.
3. If the zeros of the polynomial $f(x)=2 x^{3}-15 x^{2}+37 x-30$ are in A.P., find them.
4. Find the zeroes of the following polynomials by factorisation method.
i. $\quad 4 x^{2}-3 x-1$
ii. $\quad 3 x^{2}+4 x-4$
iii. $\quad 5 t \mathbf{2}+\mathbf{1 2 t}+7$
iv. $\quad t^{3}-2 t^{2}-15 t$
5. Given that the zeroes of the cubic polynomial $x^{3}-6 x^{2}+3 x+10$ are of the form $a, a+b, a+2 b$ for some real numbers a and b, find the values of a and b as well as the zeroes of the given polynomial.
6. Answer the following and justify:
i. Can $x^{2}-1$ be the quotient on division of $x^{6}+2 x^{3}+x-1$ by a polynomial in x of degree 5?
ii. What will the quotient and remainder be on division of $a x^{2}+b x+c$ by $p x^{3}+$ $\mathbf{q} x^{2}+\mathbf{r x}+\mathrm{s}, \mathrm{p} \neq \mathbf{0}$?
iii. If on division of a polynomial $p(x)$ by a polynomial $g(x)$, the quotient is zero, what is the relation between the degrees of $p(x)$ and $g(x)$?
iv. If on division of a non-zero polynomial $p(x)$ by a polynomial $g(x)$, the remainder is zero, what is the relation between the degrees of $p(x)$ and $g(x)$?
v. (v) Can the quadratic polynomial $x^{2}+k x+k$ have equal zeroes for some odd integer $\mathrm{k}>1$?

**Link of Optimum Online E-Learning Platform:- www.optimumschool.net/online In case of any query call at $\mathbf{+ 9 1 - 9 8 1 8 0 3 3 2 1 3}$
