薪
 OPTIMUM
 INTERNATIONAL SCHOOL

CLASS - IX

CHAPTER 2 - POLYNOMIALS

$>$ Watch the online videos "POLYNOMIALS -Lectures no- 4,5 \& 6" from Optimum Online E-Learning Platform and try to comprehend the concepts of division algorithm and remainder theorem. After that try to solve the questions given in your assignment.
$>$ Lecture No. 04
$>$ Lecture No. 05
$>$ Lecture No. 06

1. By actual division, find the quotient and the remainder when $\left(x^{4}+1\right)$ is divided 4 by $(x-1)$. Verify that remainder $=f(1)$.
2. Verify the division algorithm for the polynomials $p(x)=2 x^{4}-6 x^{3}+2 x^{2}$ $-x+2$ and $g(x)=x+2$.

Using the remainder theorem, find the remainder, when $p(x)$ is divided by $g(x)$, where
3. $p(x)=x^{3}-6 x^{2}+9 x+3, g(x)=x-1$
4. $\mathrm{p}(\mathrm{x})=2 x^{3}-7 x^{2}+9 x-13, g(x)=x-3$
5. $p(x)=3 x^{4}-6 x^{2}-8 x-2, g(x)=x-2$
6. $\mathrm{p}(\mathrm{x})=2 x^{3}-9 x^{2}+x+15, \mathrm{~g}(\mathrm{x})=2 \mathrm{x}-3$
7. The polynomials $\left(2 x^{3}+x^{2}-a x+2\right)$ and $\left(2 x^{3}-3 x^{2}-3 \mathrm{x}+\mathrm{a}\right)$ when divided by ($x-2$) leave the same remainder. Find the value of a.
8. The polynomial $p(x)=x^{4}-2 x^{3}+3 x^{2}-a x+b$ when divided by (x-1) and $(x+1)$ leaves the remainders 5 and 19 respectively. Find the values of ' a ' and ' b '. Hence find the remainder when $p(x)$ is divided by ($x-2$)
9. If $p(x)=x^{3}-5 x^{2}+4 x-3$ and $g(x)=x-2$, show that $p(x)$ is not a multiple of $g(x)$.
10.10. If $p(x)=2 x^{3}-11 x^{2}-4 x+5$ and $g(x)=2 x+1$, show that $g(x)$ is not a factor of $p(x)$.

[^0]
[^0]: **Link of Optimum Online E-Learning Platform:- www.optimumschool.net/online In case of any query call at +91-9818033213

